Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Immunol ; 95(3): e13130, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34951041

RESUMO

T cell receptor excision circles (TRECs) and kappa-deleting excision circles (KRECs) are DNA fragments potentially indicative of T and B cell development, respectively. Recent thymic emigrants (RTEs) are a subset of peripheral cells that may also represent thymic function. Here, we investigated TREC/KREC copy numbers by quantitative real-time PCR in the peripheral blood of patients with primary immunodeficiencies (PIDs, n = 145) and that of healthy controls (HCs, n = 86) and assessed the correlation between RTEs and TREC copy numbers. We found that TREC copy numbers were significantly lower in children and adults with PIDs (P < .0001 and P < .002, respectively) as compared with their respective age-matched HCs. A moderate correlation was observed between TREC copies and RTE numbers among children with PID (r = .5114, P < .01), whereas no significant correlation was detected between RTE values and TREC content in the HCs (r = .0205, P = .9208). Additionally, we determined TREC and KREC copy numbers in DNA isolated from the Guthrie cards of 200 newborns and showed that this method is applicable to DNA isolated from both peripheral blood samples and dried blood spots, with the two sample types showing comparable TREC and KREC values. We further showed that RTE values are not always reliable markers of T cell output. Although additional confirmatory studies with larger cohorts are needed, our results provide thresholds for TREC/KREC copy numbers for different age groups.


Assuntos
Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Imunodeficiência Combinada Severa/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , DNA/genética , DNA/imunologia , Feminino , Hematopoese/genética , Hematopoese/imunologia , Humanos , Lactente , Recém-Nascido , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Triagem Neonatal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de Antígenos de Linfócitos T/genética , Imunodeficiência Combinada Severa/genética , Adulto Jovem
2.
Mol Biol Evol ; 31(9): 2387-401, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24962091

RESUMO

Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations' resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Transportadores de Cassetes de Ligação de ATP/genética , Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação Puntual , Canais de Potássio/genética , Seleção Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...